Monday, December 30, 2013

Diamond Rain



Diamonds big enough to be worn by Hollywood film stars could be raining down on Saturn and Jupiter, US scientists have calculated.

New atmospheric data for the gas giants indicates that carbon is abundant in its dazzling crystal form, they say.

Lightning storms turn methane into soot (carbon) which as it falls hardens into chunks of graphite and then diamond.

These diamond "hail stones" eventually melt into a liquid sea in the planets' hot cores, they told a conference.

Continue reading the main story
Start Quote

People ask me - how can you really tell? It all boils down to the chemistry. And we think we're pretty certain”

Dr Kevin Baines
University of Wisconsin-Madison
The biggest diamonds would likely be about a centimetre in diameter - "big enough to put on a ring, although of course they would be uncut," says Dr Kevin Baines, of the University of Wisconsin-Madison and Nasa's Jet Propulsion Laboratory.

He added they would be of a size that the late film actress Elizabeth Taylor would have been "proud to wear".

"The bottom line is that 1,000 tonnes of diamonds a year are being created on Saturn.

"People ask me - how can you really tell? Because there's no way you can go and observe it.

"It all boils down to the chemistry. And we think we're pretty certain."

Thunderstorm alleys
Baines presented his unpublished findings at the annual meeting of the Division for Planetary Sciences of the American Astronomical Society in Denver, Colorado, alongside his co-author Mona Delitsky, from California Speciality Engineering.

Saturn
Gigantic storms on Saturn create black clouds of soot - which hardens into diamonds as it falls
Uranus and Neptune have long been thought to harbour gemstones. But Saturn and Jupiter were not thought to have suitable atmospheres.

Baines and Delitsky analysed the latest temperature and pressure predictions for the planets' interiors, as well as new data on how carbon behaves in different conditions.

They concluded that stable crystals of diamond will "hail down over a huge region" of Saturn in particular.

"It all begins in the upper atmosphere, in the thunderstorm alleys, where lightning turns methane into soot," said Baines.

"As the soot falls, the pressure on it increases. And after about 1,000 miles it turns to graphite - the sheet-like form of carbon you find in pencils."

By a depth of 6,000km, these chunks of falling graphite toughen into diamonds - strong and unreactive.

These continue to fall for another 30,000km - "about two-and-a-half Earth-spans" says Baines.

"Once you get down to those extreme depths, the pressure and temperature is so hellish, there's no way the diamonds could remain solid.

"It's very uncertain what happens to carbon down there."

One possibility is that a "sea" of liquid carbon could form.

"Diamonds aren't forever on Saturn and Jupiter. But they are on Uranus and Neptune, which are colder at their cores," says Baines.

'Rough diamond'
The findings are yet to be peer reviewed, but other planetary experts contacted by BBC News said the possibility of diamond rain "cannot be dismissed".

"The idea that there is a depth range within the atmospheres of Jupiter and (even more so) Saturn within which carbon would be stable as diamond does seem sensible," says Prof Raymond Jeanloz, one of the team who first predicted diamonds on Uranus and Neptune.

"And given the large sizes of these planets, the amount of carbon (therefore diamond) that may be present is hardly negligible."

However Dr Nadine Nettelmann, of the University of California, Santa Cruz, said further work was needed to understand whether carbon can form diamonds in an atmosphere which is rich in hydrogen and helium - such as Saturn's.

55 Cancri e
The planet 55 Cancri e may not be so precious after all, a new study suggests
"Baines and Delitsky considered the data for pure carbon, instead of a carbon-hydrogen-helium mixture," she explained.

"We cannot exclude the proposed scenario (diamond rain on Saturn and Jupiter) but we simply have no data on mixtures in the planets. So we do not know if diamond formation occurs at all."

Meanwhile, an exoplanet that was believed to consist largely of diamond may not be so precious after all, according to new research.

The so-called "diamond planet" 55 Cancri e orbits a star 40 light-years from our Solar System.

A study in 2010 suggested it was a rocky world with a surface of graphite surrounding a thick layer of diamond, instead of water and granite like Earth.

But new research to be published in the Astrophysical Journal, calls this conclusion in question, making it unlikely any space probe sent to sample the planet's innards would dig up anything sparkling.

Carbon, the element diamonds are made of, now appears to be less abundant in relation to oxygen in the planet's host star - and by extension, perhaps the planet.

"Based on what we know at this point, 55 Cancri e is more of a 'diamond in the rough'," said author Johanna Teske, of the University of Arizona.



Watch videos:
1.


2.





Uncertainty Principle




One of the biggest problems with quantum experiments is the seemingly unavoidable tendency of humans to influence the situation and velocity of small particles. This happens just by our observing the particles, and it has quantum physicists frustrated. To combat this, physicists have created enormous, elaborate machines like particle accelerators that remove any physical human influence from the process of accelerating a particle's energy of motion.
Still, the mixed results quantum physicists find when examining the same particle indicate that we just can't help but affect the behavior of quanta -- or quantum particles. Even the light physicists use to help them better see the objects they're observing can influence the behavior of quanta. Photons, for example -- the smallest measure of light, which have no mass or electrical charge -- can still bounce a particle around, changing its velocity and speed.
This is called Heisenberg's Uncertainty Principle. Werner Heisenberg, a German physicist, determined that our observations have an effect on the behavior of quanta. Heisenberg's Uncertainty Principle sounds difficult to understand -- even the name is kind of intimidating. But it's actually easy to comprehend, and once you do, you'll understand the fundamental principle of quantum mechanics.
Imagine that you're blind and over time you've developed a technique for determining how far away an object is by throwing a medicine ball at it. If you throw your medicine ball at a nearby stool, the ball will return quickly, and you'll know that it's close. If you throw the ball at something across the street from you, it'll take longer to return, and you'll know that the object is far away.
The problem i­s that when you throw a ball -- especially a heavy one like a medicine ball -- at something like a stool, the ball will knock the stool across the room and may even have enough momentum to bounce back. You can say where the stool was, but not where it is now. What's more, you could calculate the velocity of the stool after you hit it with the ball, but you have no idea what its velocity was before you hit it.
This is the problem revealed by Heisenberg's Uncertainty Principle. To know the velocity of a quark we must measure it, and to measure it, we are forced to affect it. The same goes for observing an object's position. Uncertainty about an object's position and velocity makes it difficult for a physicist to determine much about the object.
Of course, physicists aren't exactly throwing medicine balls at quanta to measure them, but even the slightest interference can cause the incredibly small particles to behave differently.
This is why quantum physicists are forced to create thought experiments based on the observations from the real experiments conducted at the quantum level. These thought experiments are meant to prove or disprove interpretations -- explanations for the whole of quantum theory.
In the next section, we'll look at the basis for quantum suicide -- the Many-Worlds interpretation of quantum mechanics.





Watch video:

Maxwell's Equations


Maxwell's Equations are a set of 4 complicated equations that describe the world of electromagnetics. These equations describe how electric and magnetic fields propagate, interact, and how they are influenced by objects.
James Clerk Maxwell [1831-1879] was an Einstein/Newton-level genius who took a set of known experimental laws (Faraday's Law, Ampere's Law) and unified them into a symmetric coherent set of Equations known as Maxwell's Equations. Maxwell was one of the first to determine the speed of propagation of electromagnetic (EM) waves was the same as the speed of light - and hence to conclude that EM waves and visible light were really the same thing.
Maxwell's Equations are critical in understanding Antennas and Electromagnetics. They are formidable to look at - so complicated that most electrical engineers and physicists don't even really know what they mean. Shrouded in complex math (which is likely so "intellectual" people can feel superior in discussing them), true understanding of these equations is hard to come by.
This leads to the reason for this website - an intuitive tutorial of Maxwell's Equations. I will avoid if at all possible the mathematical difficulties that arise, and instead describe what the equations mean. And don't be afraid - the math is so complicated that those who do understand complex vector calculus still cannot apply Maxwell's Equations in anything but the simplest scenarios. For this reason, intuitive knowledge of Maxwell's Equations is far superior than mathematical manipulation-based knowledge. To understand the world, you must understand what equations mean, and not just know mathematical constructs. I believe the accepted methods of teaching electromagnetics and Maxwell's Equations do not produce understanding. And with that, let's say something about these equations.
Maxwell's Equations are laws - just like the law of gravity. These equations are rules the universe uses to govern the behavior of electric and magnetic fields. A flow of electric current will produce a magnetic field. If the current flow varies with time (as in any wave or periodic signal), the magnetic field will also give rise to an electric field. Maxwell's Equations shows that separated charge (positive and negative) gives rise to an electric field - and if this is varying in time as well will give rise to a propagating electric field, further giving rise to a propgating magnetic field.
To understand Maxwell's Equations at a more intuitive level than most Ph.Ds in Engineering or Physics, click through the links and definitions above. You'll find that the complicated math masks an inner elegance to these equations - and you'll learn how the universe operates the Electromagnetic Machine.

maxwell's equations




Watch video: